
Oscillatory Motion

In the beginning of the course, we studied the position function and some cases of one-dimensional 
motion. There were three cases: x = const (constant position function); v = const (linear position 
function); a = const (quadratic position function). The last one (accelerated motion) gave us the two 
kinematic equations which we used in solving many interesting problems.

Oscillatory motion is yet another case of one-dimensional motion that sometimes takes place. Imagine, 
for example, a ball of mass m attached to a spring of stiffness k and constrained to move on the 
horizontal table in one dimension.

Let us place the origin at the point where the ball is in equilibrium, then the spring's displacement will 
equal the position of the ball. Setting up second Newton's law on the horizontal direction, we have

m a=−k x ,

since the only horizontal force on the ball is the force from the spring, which, by Hooke's law, equals 
kx and it has a negative projection on our x-axis. Now the goal is to solve for the motion of the ball (the
ball's position function x(t)).

m a=−k x is the only equation we can get for this system. Remembering that a=
d2 x
dt 2 , we can 

rewrite it as

m
d2 x
dt 2 =−k x .

It is a second-order differential equation with respect to x. One way to solve it is first switch to the 
variable of speed:

m
dv
dt

=−k x (our Newton's equation with speed instead of acceleration or position);

dx
dt

=v  (definition of speed: first time-derivative of position).



Dividing them by each other, we have m
dv
dx

=−k
x
v

, or m v dv=−k x dx . Since the variables 

separated (v's on one side and x's on the other), this can be integrated into mv2

2
=−

kx2

2
+C , or

mv2

2
+

kx2

2
=C , where C is the constant of integration. In this formula, of course, you recognize the 

energy conservation equation (see how we derived it in the Energy chapter: we integrated the second 

Newton's law), so the constant of integration is just the total energy E: mv2

2
+

kx2

2
=E . 

At the highest position x = A the ball will stop: all kinetic energy will be transferred into the potential 
energy of the spring. Therefore, the total energy equals the potential energy of the spring at x = A:

E=
kA2

2
. As the spring will be pulling back, the ball will go to the left and achieve the minimum 

position x = –A (due to conservation of energy: when at rest, the potential energy must be kA2

2
, so 

the turning points must be A and –A) where it will stop again and resume moving to the right. Thus, we 
can plug in the value of E in our conservation equation:

mv2

2
+

kx2

2
=

kA2

2
, or mv2

=k ( A2
−x2

) , from where we have v=√ k
m

(A2
−x2

) .

Now, remembering that v=
dx
dt

by definition, we plug it in and have
dx
dt

=√ k
m

( A2
−x2

) . Separating

the variables again to be able to integrate (x's on one side and t's on the other), we have

dt=
dx

√ k
m

(A2
−x2

)

=√ m
k

dx

√ A2
−x2 . We will need to integrate this to get t(x) and then reverse the 

function to finally have x(t).

So, t=√ m
k
∫

dx

√ A2
−x2

=√ m
k

arcsin
x
A

+C1 , where C1 is another constant of integration. Pulling out x, 

we have t−C1=√ m
k

arcsin
x
A

, arcsin
x
A

=√ k
m

t−√ k
m

C1 , x=A sin(√ k
m

t−√ k
m

C 1) .

We finally have the position function of the ball. It is a sine function, periodic, with the maximum A 

and minimum –A, as expected. The coefficient at the time variable, √ k
m

, determines how fast it 

oscillates, so it is called the frequency: ω=√ k
m

. The maximum position A is called the amplitude 

(that's why we called it A in the first place). Finally, the constant −√ k
m

C1 is a (scaled) constant of 

integration and determines the initial position of the ball ( x (0)=A sin(−√ k
m

C1) ), so it is called the 



phase: φ=−√ k
m

C 1 . Thus, the ball's position function can be rewritten in terms of the quantities 

defined:

x=A sin(ωt +φ) .

This is the generic position function of all kinds of similar oscillatory motion. The motion with this 
position function is called harmonic. (Motion can be oscillatory but not harmonic, e.g., a ball elastically
bouncing up and down on the horizontal surface.)

Kinematics of harmonic motion. We shall now study some properties of this type of motion. First, let 
the sine function not confuse you: there are no angles here whose sine is being taken. Sine is solely a 
function and we have the position versus time dependence in the fashion of a sine function, that's all. 
However, there is some correspondence to uniform circular motion here.

Imagine a point rotating around a circle with constant speed. Its x-coordinate at all times will be 
r cos φ, where φ is the angle the particle's radius-vector is currently making with the x-axis. But from 
rotational kinematics we know that φ can be viewed as the angular position, and for uniform circular 
motion with constant v (and therefore constant ω), its angular position function is φ=φ0+ω t . So the 
x-coordinate of the point changes with time as x (t)=r cos φ=r cos (ω t+φ0) , which is exactly the 
harmonic motion! Let the cosine instead of sine not confuse you: they are essentially the same function,

only shifted by π/2 against each other: sin(x+ π
2
)=sin x cos π

2
+cos x sin π

2
=0⋅sin x+1⋅cos x=cos x . 

Thus, any function A sin(ω t +φ) cane be transformed into A cos(ω t+ψ) , where ψ is another 
phase constant. Let's make sure:

A sin(ω t +φ)=A sin((ω t+φ−π
2
)+ π

2
)=A cos (ω t+φ−π

2
)=A cos (ω t+ψ) , so any sine harmonic 

function equals the cosine function with the new phase ψ=φ− π
2 .

There are four cases where it is possible to write out the position function without the phase. Let's start 
with the easiest one: x=A sinω t . It equals zero at time zero, so here it means that you started your 
clock when the particle was at its initial position. Further, it is positive at small positive t, so the 
particle was moving to the right (it entered the positive half of the axis at time zero).



When φ=π
2 , x=A sin(ωt +φ)=A sin(ω t+π

2
)=A cosω t . Here at zero time x = A. That means 

you start your clock when the particle is at the rightmost position.

When φ=π , x=A sin(ωt +π)=A (sinω t cos π+cos ωt sinπ)=−A sin ω t . The particle is again at 
zero at time zero, but its position grows negative with positive time: the particle is passing the 
equilibrium and moving to the left, entering the negative half-axis.

When φ=
3π

2
, x=A sin(ωt +

3π

2
)=A (sin ω t cos

3π

2
+cos ωt sin

3π

2
)=−A cos ω t . Here

x (0)=−A cos0=−A . The particle is at the leftmost position x = – A.

The particle's speed and acceleration can be obtained by differentiating the position function.

v (t )=
d
dt

A sin(ω t+φ)=ω A cos(ω t+φ) ,

a( t)=
d
dt

ω A cos(ωt +φ)=−ω
2 A sin(ω t+φ) .

Notice that a( t)=−ω
2 x (t) , and, since ω

2
=

k
m

, a( t)=−
k
m

x (t) , or ma(t)=−kx (t) , which is 

our original Newton's equation. Thus, in harmonic motion, the acceleration (second derivative of the 
position) is proportional to the position with the minus sign, and the coefficient of proportionality is the
frequency squared.

From the equations above it follows that the maximum values of speed and acceleration are
vmax=ω A , amax=ω

2 A (sine and cosine cannot be greater than 1 or less than –1). If you look at the
phases, you will see that speed has its maximum magnitude at x = 0 (which is intuitive because the 
spring potential is zero there and all energy is transferred to kinetic), and the acceleration has its 
maximum magnitude at the turning points ±A (it is also easy to understand because the net force on the 
particle from the spring is the greatest at the farthest points).

Problem 1. A particle is undergoing one-dimensional harmonic motion. At the position x1 its speed was
measured to be v1, and at the position x2 it was v2. Find the amplitude and the frequency of motion.

Solution. The generic position function of the harmonic motion is

x=A sin(ωt +φ) .

The speed of the particle at any time is

v=ω A cos(ωt +φ) .

Let's call the moments of time when the two measurements were made t1 and t2 respectively, and write 
out the given positions and speeds:



{
x1=A sin(ωt 1+φ)

v1=ω A cos (ω t 1+φ)

x2=A sin(ωt 2+φ)

v2=ω A cos (ω t 2+φ)

We need to solve for ω and A. Let's rewrite the system like this:

{
x1

A
=sin(ω t 1+φ)

v1

ω A
=cos (ω t 1+φ)

x2

A
=sin(ω t 2+φ)

v2

ω A
=cos (ω t 2+φ)

and then square and add ## 1 and 2 and ## 3 and 4 (when you have sine and cosine with unneeded 
variables inside, it's convenient to single them out, square and add, so that they both disappear since

sin2 x+cos2 x=1 ):

{
x1

2

A2 +
v1

2

ω
2 A2 =1

x2
2

A2 +
v2

2

ω
2 A2 =1

, or {
x1

2
+

v1
2

ω
2
=A2

x2
2
+

v2
2

ω
2 =A2

.

Now this one has only ω and A as unknowns, so it's easy to solve for them:

ω=√ v2
2
−v1

2

x1
2
−x2

2
, A=√ v1

2 x2
2
−v2

2 x1
2

v1
2
−v2

2
.

Applications of harmonic motion theory.

Mathematical pendulum. A material point (object of a negligible size), for example, a small ball, 
suspended on an ideal (massless and non-stretchable) string is called a mathematical pendulum (see 
Fig. 3 below).



Given the mass m of the ball and length ℓ of the string, let's find the frequency of its oscillations.

The ball moves along a circular arc of radius ℓ and, when the string makes angle φ with the vertical, is 
acted upon by the force of gravity mg, which has the projection mg sin φ along the tangent line to the 
circle, and by the tension of the string T which has no tangential projection. The ball experiences 
normal acceleration towards the pivot, but we are not interested in it right now; what we want to pay 
attention to is its tangential acceleration, perpendicular to the radius. The tangential projection of the 
second Newton's law will give us:

m aτ=m g sinφ .

Further, we can connect the tangential acceleration with the angle φ, knowing that the angular 

acceleration ε=
d2

φ

dt2 and the tangential acceleration aτ are proportional:

ε=−
aτ

ℓ
,

the minus sign coming from the fact that when the angle diminishes, acceleration grows.

Plugging it all in, we have

mε ℓ=−m g sinφ , ε=
d2

φ

dt2 =−
g
ℓ

sinφ .

The equation
d2

φ

dt 2 =−
g
ℓ

sinφ is a second-order differential equation with respect to φ. Moreover, 

given as it is, it's impossible to solve it in elementary functions. We need to make approximations to 
move on. The first-order approximation could be that the angle φ is much less than π/2 or 1, so

sin φ≈φ , and our equation becomes
d2

φ

dt 2 =−
g
ℓ
φ .

Let's look above. We have worked on this equation before! In math, it doesn't matter whether you call 
the variable x or φ: the same equation will yield the same solution. And what we have here is the 
harmonic motion equation with respect to φ: the second time-derivative of it is proportional to it with 

the minus sign. And the coefficient of proportionality, which here is
g
ℓ

, must be the frequency 

squared. Thus, ω=√ g
ℓ

.

The period of motion is the time during which the motion completes one oscillation. Looking at the 
generic position function x=A sin(ωt +φ) (do not confuse the phase φ with the angular position φ 

for the pendulum above!), we see that the period T=
2 π
ω

. There is the third parameter, called the 

linear frequency (therefore, ω is sometimes referred to as the angular frequency) ν=
1
T

= ω
2π

, 

denoted by the Greek letter nu (ν) (in older books it is often denoted by the Latin letter f); it shows the 



number of oscillations per second and measured in Hz. Angular frequency, like angular speed, is 
measured in s–1.

Therefore, the period of one small oscillation of the mathematical pendulum is T=
2 π
ω =2π√ ℓ

g
, and 

for the ball on the spring T=2π√ m
k

. The period of the mathematical pendulum, as it turns out, does 

not depend on its mass or amplitude, only on its length! But remember that we solved the pendulum 
only for small oscillations; when the angular amplitude is comparable to π/2, the oscillation will not be 
harmonic and the period will depend on the amplitude. Likewise, for the ball on the spring we used 
Hooke's law, which works well for small deformations of the spring; for large amplitudes, the spring 
will be affected differently and the oscillations will stop being harmonic.

I made a plot which shows how the period of oscillations of the mathematical pendulum is affected by 
its amplitude.

On the horizontal you have the angular amplitude while on the vertical you have the factor by which 

the period differs from the one of small oscillations T 0=2π√ ℓ
g

. You can see that even for π/6 (30º) 

the increase is still insignificant: T = 1.02 T0. For larger amplitudes, the error that our harmonic 
approximation gives will be more noticeable: for π/3, the error would already be 7% (T = 1.07 T0).

Physical pendulum. All real pendula are physical. In general, a physical pendulum is a rigid body 
pivoted around some point and left to oscillate due to gravity force. We shall here find the period of 
oscillation of a physical pendulum.



Consider a random rigid body pivoted around the axis going through point O normal to the paper, 
whose center of mass is at point C. It is at equilibrium when the line OC is vertical (the torque of the 
gravity force would be zero). When the body is inclined by angle φ, the torque of gravity would be

m g d sin φ , where d is the distance between the pivot and the center of mass. Setting up the torque 
equation:

I ε=mgd sin φ , where I is the rigid body's moment of inertia around the point O.

Since ε=−
d2

φ

dt
(angular acceleration is positive when the angle diminishes),

I
d2

φ

dt
=−mgd sinφ , or 

d2
φ

dt
=−

mgd
I

sinφ .

We have the same type of equation as for the mathematical pendulum. Approximating sin φ≈φ for 
small oscillations, we have

d2
φ

dt
=−

mgd
I

φ .

This is the harmonic motion equation again. From our experience, we know that
mgd

I
must be the 

frequency squared:

ω
2
=

mgd
I

, ω=√ mgd
I

, T=2π√ I
mgd

.

Problem 2. Find the period of small oscillations of a) a rod of length ℓ about its end; b) a hoop of 
radius R about any point on it.

Solution. Using T=2π√ I
mgd

, we have:

a) For the rod about its end I=
mℓ2

3
and distance from the center of mass to the pivot is d=

ℓ
2

, so

T=2π√ m ℓ2
⋅2

3⋅m gℓ
=2π√ 2 ℓ

3g
.

b) The hoop's moment of inertia about its center is mR2. Using Huygens – Steiner theorem, we have
I=m R2

+m R2
=2 m R2 about any point on the hoop. Obviously, d = R here. Plugging in:

T=2π√ 2m R2

m g R
=2π√ 2 R

g
.

Problem 3. Remembering that in the real world the mathematical pendulum is actually a solid ball of 
radius r suspended by the string of length ℓ, find its period of small oscillations taking this fact into 
account. Compare it to the formula derived for the mathematical pendulum.



Solution. Using the formula for the period of oscillations of a physical pendulum

T=2π√ I
mgd

and seeing that for this situation the distance between the pivot and the center of mass would be

d=ℓ+r , and the moment of inertia of the solid ball around the pivot is I=
2
5

mr2
+m(ℓ+r )2

, we 

have

T=2π√
2
5

m r2
+m(ℓ+r)2

mg(ℓ+r )
=2π√ ℓ+r

g
+

2r2

5g (ℓ+r)
.

If r→0, our formula becomes the standard period of the mathematical pendulum T=2π√ ℓ
g

.

Let's try to consider the situation when r << ℓ, but still not zero. For this case,

T≈2π√ ℓ
g
+

r
g
+

2 r2

5g ℓ
=2π√ ℓ

g √1+
r
ℓ
+

2 r2

5 ℓ2
≈2π√ ℓ

g √1+
r
ℓ
≈2π√ ℓ

g
(1+

r
2 ℓ

) , thus the error arising for 

the mathematical pendulum model's actually being physical is proportional to half the ratio of the ball 
radius and the strings length. Thus, a small ball on a long string would suffice for a good model of the 
mathematical pendulum.

More complicated oscillators. Sometimes you may encounter an oscillating system that is more than a
pendulum: for example, a rod with attached springs and strings, some of which go over some pulleys, 
etc. The usual question is to find the frequency (or period, or linear frequency) of the oscillator. There 
are two ways to do that. First is the torque equation: in a non-equilibrium position find the torques and 
set them equal to Iε. Many of them will depend on the angle φ, and ε would be the negative second 
time-derivative of φ. Now make approximations for small φ ( sinφ≈φ ,cos φ≈1 ), and pull ε on one 
side. Your equation would look like this:

−ε=
d2

φ

dt2 =−(...)φ ; this is the harmonic equation, and the expression in the parentheses must be the

frequency squared. You have found the frequency.

The second way is to write out the potential and kinetic energy of the oscillator in a non-equilibrium 
position and set it equal to the constant E. Then differentiate the whole expression by time. Angular 
speed should cancel and you will be left essentially with the torque equation. Now proceed as above 
and find the frequency.

Problem 4. A rod of mass m and length ℓ is pivoted around one of its ends. At the length ℓ/3 from the 
pivot, a ball of the same mass m is attached to the rod, and at the other end of the rod a spring of 
stiffness k is attached, whose other end is fixed. Find the frequency of this oscillator.



Solution (torques). When you rise the rod by some angle φ, the torque from the hanging ball will be 
mgℓ/3 cos φ, the torque from the gravity on the rod will be mgℓ/2 cos φ, and from the spring k(x – x0)ℓ, 
where x is its displacement from the horizontal up, and x0 its original displacement from the non-
stretched position. The moment of inertia of the rod and ball is

I=
mℓ2

3
+m(

ℓ
3
)

2

=
4
9

m ℓ2 .

From geometry, x=ℓ sinφ≈ℓφ .

The torque equation is

4
9

m ℓ2
ε=

mgℓ
3

cosφ+
mgℓ

2
cosφ+k (ℓ φ−x0)ℓ≈

mgℓ
3

+
mgℓ

2
+k (ℓφ−x0)ℓ=

5
6

mgℓ+k (ℓφ−x0)ℓ .

4
9

ε=
5 g
6 ℓ

+
k
m

(φ−
x0

ℓ
) .

The additional constants in the harmonic equation don't affect the frequency: if, instead of ẍ=−ω
2 x

we have ẍ=−ω
2 x+C , where C is any constant (dot above the variable is a time-derivative, two dots

– second time-derivative), it affects only the equilibrium position, but not frequency (you can try 
proving it as an exercise). So, our torque equation,

ε=
9
4

5
6

g
ℓ
+

9
4

k
m

φ−
k
m

x0

ℓ
,

will give us the frequency ω=√ 9 k
4 m

.

Solution (energy). Displaced by φ, the setup has the potential energy of the ball
mgℓ

3
sin φ , potential

energy of the rod
mgℓ

2
sinφ and potential energy of the spring k

(x−x0)
2

2
=k

(ℓφ−x0)
2

2
. The 

kinetic energy of the system is I ω
2

2
=

1
2

4
9

mℓ2
ω

2
=

2
9

m ℓ2
ω

2 . Conservation of energy:



E=
2
9

m ℓ2
φ̇

2
+

mgℓ
3

sin φ+
mgℓ

2
sin φ+k

(ℓφ−x0)
2

2
, or

E=
2
9

m ℓ2
φ̇

2
+

5
6

mgℓ sin φ+k
(ℓφ−x0)

2

2
≈

2
9

mℓ2
φ̇

2
+

5
6

mgℓφ+k
(ℓφ−x0)

2

2
.

Differentiating the whole thing by time:

0=
2
9

m ℓ2 2φ̇ φ̈+
5
6

mgℓ φ̇+
k
2

2(ℓφ−x0)ℓ φ̇ , φ̇ cancels, divide by mℓ2, and we have

0=
4
9

φ̈+
5
6

g
ℓ
+

k
m

φ−
k
m

x0

ℓ
, φ̈=−

9
4

k
m

φ+(
k x0

mℓ
−

5g
6 ℓ

) .

The quantity in the parentheses is a constant and it does not affect the solution, so the coefficient before
φ must be frequency squared:

ω
2
=

9 k
4 m

, ω=√ 9 k
4 m

.

In many cases, deriving energy is easier than setting up the torque equation.


